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Abstract. Quantification of environmental controls on ecosystem photosynthesis is essential to understand the impacts of
climate change and extreme events on the carbon cycle and the provisioning of ecosystem services. Machine learning models
have become popular for simulating ecosystem terrestrial photosynthesis because of their predictive skill, but often do not
consider temporal dependencies in the data, even though process understanding suggests that these should exist. Here, we
investigate how models that account for temporal structure impact the prediction of ecosystem photosynthesis. Using time-
series measurements of ecosystem fluxes paired with measurements of meteorological variables from a network of globally
distributed sites (/N = 109) and remotely sensed vegetation indices, we train three different models to predict ecosystem gross
primary production (GPP): a mechanistic, theory-based photosynthesis model, a memoryless multilayer perceptron (MLP) and
a recurrent neural network (Long Short-Term Memory, LSTM). Through comparisons of patterns in model error, we assess
the ability of these models to predict GPP across a wide diversity of ecosystems and climates, and to account for temporal
dependencies, with a focus on effects by low rooting zone moisture and freezing air temperatures. We find that both deep
learning models outperform the mechanistic model, and that the LSTM performs best with an R? of 0.74 for spatial out-
of-sample predictions. In particular, model skill is consistently good across moist sites with strong seasonality. Model error
tends to increase with increasing potential cumulative water deficits, in particular in ecosystems with evergreen vegetation.
Generalisation patterns reveal that the LSTM tends to be more successful than the MLP in simulating GPP in dry environments,
suggesting an advantage of recurrent models in those conditions. However, a large variability in model skill across relatively
dry sites remained. Insufficient information on the exposure and response to water stress and related effects on GPP appear to
be dominant sources of error for modelling ecosystem fluxes across the globe. With the increasing frequency of hydroclimatic
extreme events, effects of water limitation are expected to become more prevalent, which calls for models that better represent

its impact on ecosystem function.

1 Introduction

Photosynthesis plays a major role in the global carbon cycle and drives important ecosystem functions (Beer et al., 2010).

Ecosystem-level gross CO, uptake through photosynthesis is referred to as gross primary production (GPP) and varies in
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response to the environment. Understanding its variations across space and time as well as its dependencies on environmental
conditions is key for predicting changes and feedbacks in the terrestrial biosphere (Booth et al., 2012).

GPP variations are driven by multiple, simultaneously varying environmental factors and the physiological and structural
responses of plants to these conditions. Solar radiation supplies the energy for photosynthesis and acts as a dominant driver of
GPP, depending on light absorption (Monteith, 1972). Temperature, light and water availability trigger phenological changes
and regulate seasonal cycles of active leaf surface area and therefore seasonal changes in light absorption. Air temperature
affects leaf temperatures, which in turn govern enzymatic rates and photosynthesis (Berry and Bjorkman, 1980; Kattge and
Knorr, 2007; Kumarathunge et al., 2019; Bernacchi et al., 2003). Low moisture availability across the rooting zone, in com-
bination with a high vapour pressure of air at the leaf surface, determines the effects of water stress and can lead to GPP
reductions (Stocker et al., 2018; Novick et al., 2016).

Continuous GPP estimates can be obtained from eddy covariance measurements of ecosystem gas exchange (Baldocchi,
2020) and capture surface-atmosphere exchange fluxes, integrated over a radius on the order of a kilometre around the site of
measurement (Chu et al., 2021). These measurements, paired with observations of meteorological variables and soil conditions,
are made available through different networks and initiatives (e.g., AmeriFlux, ICOS, OzFlux). The combination of data from
multiple regional networks has led to large datasets with standardized processing of eddy covariance measurements from a large
number of sites (Pastorello et al., 2020; Hufkens and Stocker, 2025; Abramowitz et al., 2024). The availability of large datasets
of GPP along with their environmental covariates, and paired with remotely sensed variables, has made machine learning (ML)
a widely used approach for predicting spatio-temporal variations of ecosystem-atmosphere exchange fluxes (Kang et al., 2023;
Gaber et al., 2024; Tramontana et al., 2016; Montero et al., 2024; Papale et al., 2015; Yang et al., 2007; Jung et al., 2011; Joiner
and Yoshida, 2020; Zheng et al., 2020).

Process understanding and empirical patterns of GPP dynamics suggest that there should be temporal dependencies in data
of GPP and its predictors. Temporal dependencies arise as a result of several processes. Low soil moisture can reduce GPP
(Stocker et al., 2018) and reflects the history of precipitation, radiation, and leaf phenology over the preceding weeks to months.
Plant hydraulic processes induce a temporal hysteresis effect over the course of diurnal cycles (Tuzet et al., 2003). Physiological
changes are caused, e.g., by the seasonal acclimation of the photosynthetic apparatus to varying levels of radiation inputs and
temperature (Kumarathunge et al., 2019; Luo and Keenan, 2020; Liu et al., 2024b; Berry and Bjorkman, 1980). Ecosystems
in cold climates have been found to delay springtime photosynthesis resumption early in the season through photoprotective
processes, despite high levels of solar radiation (Luo et al., 2023, henceforth referred to as "cold acclimation"). Stress by
extreme environmental conditions can cause delayed and long-lasting effects, such as impaired transpiration and reduced CO
assimilation (Barber and Andersson, 1992; Reichstein et al., 2013; McDowell et al., 2022; Bastos et al., 2020; Yu et al., 2022).

Several published machine learning models for GPP treat values of GPP time series as independent and identically distributed
observations and therefore do not account for temporal dependencies (Nelson et al., 2024; Kang et al., 2023; Tramontana et al.,
2016; Gaber et al., 2024). This limitation may be relieved by temporal aggregation to daily-monthly time scales and by pairing
data with additional, remotely sensed observations that capture phenological changes and variations in the amount of active,

light-intercepting foliage area (Baldocchi, 2018). However, additional physiological changes that affect the efficiency of light
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utilization for COs assimilation at the leaf level are more challenging to capture by remotely sensed reflectance data (Ryu et al.,
2019; Stocker et al., 2018). As a consequence, substantial unexplained GPP variation is expected to remain at the seasonal and
diurnal time scales.

A potential solution for this problem is the use of time-aware machine learning algorithms that can learn non-stationary rela-
tionships and temporal dependencies. Such algorithms have been introduced for modelling GPP and related fluxes (Nakagawa
et al., 2023; Besnard et al., 2019; Kraft et al., 2024; Montero et al., 2024). Montero et al. (2024) compared the performance of
three recurrent architectures for GPP modelling and evaluated them on GPP extremes. Besnard et al. (2019) evaluated a Long
Short-Term Memory (LSTM) network to study net ecosystem CO, exchange. Kraft et al. (2024) assessed sequential models for
global upscaling of evapotranspiration. Nakagawa et al. (2023) introduced a temporal fusion transformer for global upscaling
of GPP. In these previous studies, the impact of using such an architecture for modelling known temporal effects was either not
evaluated or inconclusive.

In contrast to ML models, mechanistic GPP models embody process understanding and provide a theory-based prediction
that accounts for these known temporal dependencies. The foundation in plant physiology may also help these models to
generalise more robustly, as the underlying relations remain valid when extrapolating to new conditions not seen in the training
data. The price to pay is that these models lack the flexibility to pick up any patterns that were not anticipated during their
design, whereas the high representation power of ML models gives them the ability to uncover and respect such patterns.

In this study, we evaluate the use of an LSTM (Hochreiter and Schmidhuber, 1997) as a predictor of GPP. LSTMs have been
shown to be successful at tasks where memory effects across a range of temporal scales are involved, such as sea surface tem-
perature prediction (Zhang et al., 2017), rainfall-runoff modelling (Kratzert et al., 2018) and canopy greenness modelling (Liu
et al., 2024a). To contrast the recurrent and purely data-driven design, we compare against a standard, non-recurrent multilayer
perceptron (MLP), as well as to the process-based P-model (Stocker et al., 2020). We compare these models based on model
performance and generalisation capabilities. To investigate the ability of the LSTM to account for temporal dependencies, we
assess seasonal patterns of cold acclimation and water limitation effects in dry conditions. Additionally, we analyse spatial
patterns of model generalisability (spatial out-of-sample performance) with respect to different environmental factors.

To aid the models in simulating temporal dependencies, we also provide additional features to the standard set of predictors.
In view of the known influence of root zone moisture on GPP (Stocker et al., 2018) and the inability of the MLP to account for
the precipitation and radiation history (and thus implicitly for the evolution of root zone moisture), we test if its performance
improves when (simulated) soil moisture is provided as a complementary predictor. Providing observation-derived soil moisture
or a general index of water availability as an additional predictor is a common approach taken also for other memoryless GPP
models (Nelson et al., 2024; Kang et al., 2023; Tramontana et al., 2016; Gaber et al., 2024). While the LSTM is expected to be
able to learn the effects of soil moisture limitation, we also test whether it benefits from an Earth-observation derived estimate

of root zone water storage capacity (Stocker et al., 2023) as additional time-invariant context.



95

100

105

110

115

120

https://doi.org/10.5194/egusphere-2025-1617
Preprint. Discussion started: 25 April 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

2 Materials and methods
2.1 Data

We sourced daily GPP data from a collection of eddy covariance flux sites gathered from the PLUMBER?2 framework (Ukkola
et al., 2022), which includes sites from OzFlux (Isaac et al., 2017), FLUXNET2015 (Pastorello et al., 2020) and LaThuile; as
well as AmeriFlux, ICOS Warm Winter 2020 (Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre, 2022) and
ICOS Drought 2018 (Drought 2018 Team and ICOS Ecosystem Thematic Centre, 2020). Site selection was performed through
several steps. Sites located in cropland or wetland ecosystems were excluded. For each site, we only included full calendar
years of data. Some years of data were excluded due to evident inconsistencies found by visual inspection. We selected sites
with at least five consecutive years of high-quality, gap-free data. GPP data were included if at least 50% of all half-hourly
measurements were of good quality (either measured or gap-filled with high confidence). In total, this process resulted in a
collection of 109 sites (Figure 1) with a total of 1090 site-years of data. Detailed site information is given in Appendix A.

We used GPP estimates generated by the nighttime partitioning method (GPP_NT_VUT_REF; Reichstein et al., 2005). Half-
hourly GPP estimates were aggregated to obtain daily GPP values. In addition to GPP, meteorological variables were obtained,
which were measured directly at the flux sites. We used the following meteorological variables: air temperature (TA_F_MDS),
daytime air temperature (TA_DAY_F_MDS), shortwave incoming radiation (SW_IN_F_MDS), longwave incoming radiation
(LW_IN_F_MDS), daytime vapour pressure deficit (VPD_DAY_F_MDS), air pressure (PA_F), precipitation (P_F) and wind
speed (WS_F). Observations that were either missing or had insufficient quality (<50% measured or gap-filled half-hourly mea-
surements with high confidence) were gap-filled with linear interpolation for air temperature, respectively k-nearest neighbour
imputation per site. This only affected around 10% of all predictor values.

Along with local site-level measurements, we used remotely sensed estimates of the fraction of absorbed photosyntheti-
cally active radiation (fAPAR), extracted from the MODIS FPAR MCD15A2H Collection 6.1 product (Myneni et al., 2021).
fAPAR captures variations in phenology and represents the amount of solar radiation absorbed by the canopy and usable for
photosynthesis. APAR data were extracted for the pixel (500 x 500 m? area) that contains the flux measurement site and for the
eight pixels immediately surrounding it. The nine values where combined through a weighted average, using as weights the
inverse of their variance as per the data product. The fAPAR sequences were gap-filled based on the mean seasonal cycle, then
smoothed and interpolated to the time resolution of the flux data with a LOESS spline.

The selected sites cover a wide range of environmental factors, in particular aridity (Figure 1). To measure aridity, we
calculated the moisture index (MI) for each site as total P/PET, where P is the precipitation measured at the site and PET
is the potential evapotranspiration following Priestley-Taylor (Priestley and Taylor, 1972), as implemented in the SPLASH
ecosystem water balance model (Davis et al., 2017). The root zone water holding capacity for each site was sourced from

(Stocker et al., 2023).
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— - Arid (0.05-0.20)

< Semi-arid (0.20-0.50) -
e Dry subhumid (0.50-0.65) ~
«  Humid (0.65-0.75)
Hyper-humid (>0.75)

Figure 1. Site locations and their moisture indices. The quantised moisture index values are given in brackets for each category.

2.2 Models

We have implemented two deep learning models to evaluate different architectures for the prediction task. To account for
temporal dependencies, we used a Long Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997). The
network included LSTM cells with layer normalization, known to stabilize hidden dynamics and reduce training time (Ba
et al., 2016). The number of layers and hidden dimension of the network were tuned as hyperparameters on validation data.
The LSTM layers were followed by a variable number of linear layers with ReLU activations that each halve the dimension
until reaching a size of 16 neurons.

To isolate the impact of recurrence, we implemented a second neural network model without any memory mechanism,
namely a standard multilayer perceptron (MLP). Its architecture is identical to keeping only the linear layers of the LSTM.
The hidden dimension of the first layer was tuned as a hyperparameter. The architectural similarity means that the difference
between predictions of the two networks is a good indication for the influence of information from past time steps. Hyperpa-
rameters were tuned separately to ensure both variants reach their best performance.

The third model was the P-model, a mechanistic, theory-based representation of ecosystem-level photosynthesis acclimation
and GPP (Stocker et al., 2020; Wang et al., 2017; Prentice et al., 2014). It builds on the widely used Farquhar-von Caemmmerer-
Berry (FvCB) model for leaf-level Cs photosynthesis (Farquhar et al., 1980). The FvCB model is combined with an optimal
balancing of the costs of carbon assimilation and transpiration (Prentice et al., 2014). Furthermore, the P-model implements the
coordination hypothesis, which states that photosynthesis is balanced at the intersection of light and Rubisco-limited assimila-
tion rates during average daytime conditions (Maire et al., 2012). Based on these relations, the P-model predicts photosynthesis
acclimation parameters to describe the processes that determine the light use efficiency (LUE). GPP is then modelled as the
product of LUE and absorbed photosynthetically active radiation (APAR), which in turn is taken to be the product of the pho-
tosynthetic photon flux density (PPFD) and fAPAR. The forcings for the P-model correspond to the input data of the LSTM
and the MLP. We used the FULL model setup as described in Stocker et al. (2020), which includes an empirical soil moisture
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stress function and temperature dependency of the intrinsic quantum yield. These two components were calibrated to the data
with an optimization of four parameters through minimising the root mean squared error with the generalised simulated anneal-
ing algorithm, as implemented in the GenSA R package (Xiang et al., 2013). The P-model is implemented in the R package
rsofun (Stocker et al., 2024).

2.3 Experimental setup

We assessed the three models for their ability to handle temporal dependencies and their ability to generalise to new sites with
different environmental conditions.

Global model. We first evaluate each model in a spatial cross-validation setup, which measures performance at sites that
were not seen during model training (where "training" of the P-model means calibration). For the spatial cross-validation, we
assigned each site to one of five folds, stratified based on the per-site mean air temperature and the moisture index to achieve a
similar distribution of climate types in all folds. In turn, four folds served as training data to fit the model weights and tune the
hyperparameters, then GPP predictions were produced for the test sites in the fifth, held-out fold.

Site-specific model. To separate changes in environmental conditions (which can be covered by the global model) from
potential variations of the functional relationships between different sites (which cannot be represented by a single set of model
parameters), we also fit separate per-site models and evaluate them with a temporal cross-validation. In that setup, the temporal
sequences of predictors and GPP at every individual site are split into years, setting the start of the year to the coldest month for
sites in temperate, continental and polar climates, and to the wettest month for tropical and arid sites (following the Koppen-
Geiger climate code). Cross-validation then proceeds by holding out every year in turn, and fitting the model on the remaining
years.

In both setups, the models are trained on chunks of 128 days, whereas testing was performed on the full sequences (i.e.,
all data of a site in the spatial cross-validation setup, respectively individual years in the temporal cross-validation setup). The
training chunks were created per site, with a random start date of the initial chunk within the first 96 days and a sliding window
with regular overlap of 32 days. The features were standardized using the mean and standard deviation of the training folds.

Models were trained by minimising the mean squared error with the Adam optimizer (Kingma and Ba, 2017). Training
was performed for a maximum 50 iterations and stopped after 10 iterations without improvement in the validation loss. To
limit overfitting, an L2 penalty was applied on the parameter updates, and dropout (Hinton et al., 2012) was used after each
LSTM layer except for the last layer. The learning rate was adaptively reduced when the loss no longer improved for several
iterations. The batch size, the weight of the L2 penalty, the dropout rate, the initial learning rate, the patience before reducing
the learning rate as well as the reduction factor were all tuned in an inner cross-validation loop within each data fold. The
hyperparameters were tuned using random search for 20 iterations in the spatial cross-validation setup and 40 iterations in the
temporal cross-validation setup. The set of options for each hyperparameter is listed in Table 1.

GPP predictions were evaluated using the squared Pearson’s correlation coefficient (R?) and root mean squared error
(RMSE). In addition to assessing the daily predictions, we aggregated predictions and observations to different scales. We

calculated the mean seasonal cycle by averaging over all years observed at a site to obtain a mean value per day of the year.



180

185

190

195

200

205

210

https://doi.org/10.5194/egusphere-2025-1617
Preprint. Discussion started: 25 April 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Predictions and observations were also temporally aggregated to site-level means. Moreover we calculated daily anomalies,
defined as deviations between the daily values from the mean seasonal cycle; as well as yearly anomalies, defined as deviations
between a site’s annual mean values and its global, multi-year mean.

The site-specific models were evaluated for test years that start at the wettest or coldest month. For days before the first day
of the first such month, no predictions where made. When comparing the site-specific model and the global model at the site
level, we therefore filter the predictions of the global model to comprise the exact same test days as the site-specific model.

When evaluating the P-model, the same spatial cross-validation and temporal cross-validation was used as for the machine
learning models, with the model parameters calibrated separately for each fold (Stocker et al., 2024).

We investigated the ability of the models to capture two different, well-known temporal effects. To test how well soil moisture
effects are reproduced, we looked at the (absolute) percentage error of the model predictions as the potential cumulative
water deficit (PCWD) increases. PCWD was calculated from the flux data as the cumulative difference between potential
evapotranspiration (PET) and precipitation (Stocker, 2021). PET was estimated based on Priestley-Taylor (Priestley and Taylor,
1972), as implemented in the SPLASH ecosystem water balance model (Davis et al., 2017). Values were pooled from all sites
and all test days per PCWD interval, with intervals chosen such that they have at least 100 data points.

Second, we evaluated the models’ ability to reproduce cold acclimation effects. We selected four sites that have been found
to have a reduced light use efficiency and thus a delayed increase in GPP at the start of the growing season (DE-Hai, US-Hal,
US-MMS, US-PFa). Prediction errors at these sites were contrasted with those at four sites that did not exhibit any GPP delay
(BE-Vie, FI-Hyy, NL-Loo, RU-Fyo), based on the findings of Luo et al. (2023). For the two groups of sites, we aggregated and
compared predictions per day of the year with different models.

For the global LSTM model, we compared site-level performance across various environmental conditions: moisture in-
dex (P/PET), Koppen-Geiger climate zone (Beck et al., 2018), and IGBP vegetation type (International Geosphere-Biosphere
Programme). To further investigate the generalisation of the models across sites, we compared site-level performance be-
tween the global model and the site-specific model, by computing the relative difference AR? = Réobal — R2,. and the ratio
rRMSE = RMSEgioba1/ RMSEgie.

Finally, we fed additional predictors to the standard feature set of the deep learning models. For the MLP, we added soil
moisture. Due to the limited quality of measured soil moisture at many flux sites, we used modelled soil moisture from the
SPLASH water balance model (Davis et al., 2017). For the LSTM, we added the root zone water storage capacity, extracted
from the global map of Stocker et al. (2023).

3 Results
3.1 Overall performance

Overall, we found that both machine learning models in the global setting (i.e., a single, fixed model trained on multiple sites)
predict GPP more accurately than the process-based P-model (Table 2). For daily predictions, the R? calculated from pooled
data of all sites was 0.74 for both the LSTM and the MLP compared to 0.62 for the P-model. The RMSE was 16% lower for
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LSTM and MLP
Hidden dimension 32, 64, 128, 256, 512
Learning rate 1071,5%1072,1072,1073,107%,3x 1074, 5 x 1074, 7 x 1074, 9 x 107*

Scheduler patience 5, 10, 20, 30
Scheduler factor 0.1,0.5,0.9
Weight decay () 0.01, 0.001, 0.0001, 0.00001, O
Batch size 16, 32, 64, 128, 256

LSTM-only
Dropout 0,0.1,0.2,0.3,0.4,0.5
Number of layers 1,2,3,4,5

Table 1. Hyperparameter search space for the LSTM and MLP models.

the LSTM than for the P-model. Both the LSTM and MLP modelled the seasonal cycle well, with R? values of 0.82. The
P-model achieved an R? of 0.76 for modelling the mean seasonal cycle. The prediction of anomalies was more challenging
for all three evaluated models. The LSTM achieved an R? of 0.24 for daily anomalies and R? of 0.14 for annual anomalies.
While the differences in both R? and RMSE were minimal between the LSTM and MLP, the P-model was outperformed in
both aspects.

Model performance varied substantially between sites (Figure 2). For 93 (out of 109) sites the LSTM reached a higher R?
value than the P-model. The overall performance differences between the LSTM and MLP were negligible, with each model

outperforming the other at roughly half of the sites.

Model Daily Seasonal Spatial Daily Anom. | Annual Anom.
R*> RMSE | R> RMSE | R* RMSE | R?® RMSE | R> RMSE
LSTM | 074 201 | 082 145 |070 096 | 024 143 | 014 043
MLP 074 200 | 082 144 | 070 097 | 025 144 | 012 043
P-model | 0.62 240 | 076 171 | 058 1.12 | 019 169 | 005 046

Table 2. Performance metrics (R? and RMSE) of the global model at different aggregation levels. Metrics are calculated from pooled data of
all sites. "Daily" refers to an evaluation of daily predictions and observations. "Seasonal" refers to an aggregation by day of the year per site.
"Spatial" refers to an evaluation of the means per site. "Daily anom." refers to the deviation of daily values from the mean seasonal cycle per

site. "Annual anom." refers to the deviation of the annual mean from the multi-year mean per site.

More salient differences between the models were observed when inspecting the predicted mean seasonal cycles within
different climate zones (Figure 3). The deep learning models were better at predicting the timing of early spring GPP increase

in several climates (Koppen-Geiger codes Dfb, Dfc, Cfa). They also outperformed the P-model in desert and semi-arid cli-
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Figure 2. Comparison of the LSTM against the P-model (a) and against the MLP (b). R? of predicted versus observed values of daily GPP
per site from the global cross-validation is shown for the LSTM along the y-axis and the P-model/MLP along the z-axis. The dotted line

indicates equal performance.

mates. Notably the LSTM predicts the seasonal cycle more accurately than the MLP particularly in hot-summer Mediterranean

climates (Koppen-Geiger code Csa).
3.2 Temporal patterns in model error

The LSTM showed different error characteristics than the P-model at high values of PCWD. While relative errors increased
with higher PCWD for the P-model, they stayed relatively constant for the LSTM (Figure 4a.) For all pooled data, the three
models showed similar error distributions at lower levels of PCWD, again the errors of the P-model increased at higher PCWD
values, whereas they did not for the LSTM and the MLP.

Separating the analysis of model errors versus PCWD by vegetation type revealed differences at higher PCWD values
(Figure 4b.). For evergreen forests, relative errors increased for both the P-model and the MLP from a PCWD of 800 mm, but
also decreased again. For non-evergreen forests, both the LSTM and the MLP showed lower relative error than the P-model
above a PCWD of 1000 mm.

The comparison between sites with and without cold acclimation (delayed GPP) revealed clear differences w.r.t. the predicted
seasonal cycles (Figure 5) of the different models and the seasonal cycle of model bias. For sites without a delay in springtime
GPP increase, all models performed similarly during spring. For sites with cold acclimation, both deep learning models capture
the delay better than the P-model. The LSTM predicts the evolution of GPP best during springtime, although that edge is mostly

during the late spring, whereas some bias remains at the onset of GPP increase.
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Figure 3. Mean seasonal cycle of GPP and model predictions by climate zone and hemisphere. Predictions from the global cross-validation

for the LSTM, MLP and P-model are compared against GPP observations. Climate zone boundaries are from Beck et al. (2018).

3.3 Spatial patterns in model performance

The observed error patterns suggest a qualitatively different behaviour of machine learning models, especially the LSTM, dur-
240 ing conditions where temporal effects are known to occur. To investigate this further at the site level, we plot model performance

per site against relevant site characteristics (Figure 6).
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Figure 4. Error distribution across different amounts of cumulative water deficit (PCWD, quantized into 100 mm bins). Bins with less than
100 samples are not shown. Predictions are by the global models. Lines denote the median values, shaded regions lie between the lower
(25%) and upper (75%) quartiles. (a) all data pooled. (b) Evergreen sites, including Evergreen Needleleaf Forest and Evergreen Broadleaf

Forest. (c) Non-evergreen sites, including all other vegetation types (Deciduous Forests, Shrublands, Savannas and Grassland).

The LSTM performed best for relatively moist sites. Across sites with moisture index P/PET > 0.75 the R? is 0.76, whereas
it was only 0.57 for more arid sites (MI <0.75). The (normalised) RMSE follows a similar pattern, with a value of 0.88 for sites
with MI <0.75, compared to 0.57 for moist sites.

We found only a single site with poor predictions and a high moisture index, conditions at that site are not adequately

represented since it is the only tropical evergreen site in the dataset. All other sites with low performance (R? < 0.5) have a
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Figure 5. Mean seasonal cycle of GPP and model predictions for sites with delayed GPP (a) and non-delayed GPP (b). The shaded regions
mark the area between the lower (25%) and upper (75%) quartiles. The plot on the left includes four sites with a delay in the GPP increase.
The plot on the right includes four sites with without the delay in the GPP increase.

moisture index below 0.75. The opposite is not true: the R? varies greatly among the drier sites, not all sites with low moisture
index exhibit poor performance.

All sites with low R? (<0.5) belonged to desert and semi-arid (BWh, BWk, BSh, BSk), tropical monsoon (Am), Mediter-
ranean (Csa, Csb) and warm temperate (Cfa) climates. Predictions are especially poor in cold semi-arid climates (BSk). In
terms of normalised RMSE, also sites in polar climates (ET) performed relatively poorly, followed by desert and semi-arid
climates.

Among vegetation types, the LSTM works best for sites with deciduous broadleaf forest vegetation, with an average R? of
0.84. Sites with inaccurate predictions (R? < 0.5) are spread across most vegetation types, with the exception of mixed forest
and deciduous broadleaf forest. The vegetation types with the lowest overall performance are evergreen broadleaved forests

and open shrublands.
3.4 Generalisation across space

The ability of the global LSTM to generalise across space varies across different values of the moisture index, vegetation types,
and climate zones (Figure 7). For most sites, we observe a positive rRMSE, meaning that the global model is less accurate than
the site-specific ones. On the other hand, A R? exhibits a less clear dependence on the moisture index, vegetation types, and
climate zones.

For relatively arid sites (MI<0.75), site-specific models almost never have a higher RMSE than the global one (4 out of
43 sites, or 9%), whereas the advantage is less pronounced for moist sites (14 out of 66, or 21%). Out of the 19 sites with a

considerable drop in performance of the global model compared to the site-specific model (poor generalisability of the model

12



265

270

https://doi.org/10.5194/egusphere-2025-1617
Preprint. Discussion started: 25 April 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

a R?
°® ° ° [ |=£| %
s iR
038 Cho ® 8 ge, 2, 05 or .
. oe o 9 '
[ ]
06 :. .o.: '..‘.‘ ® © 1 r 0.0 . .
. [ ] [ ]
* J%e 00 ° F K F P S &g
BN [
« o @ Vegetation type
04 —op g yp
[ ]
A ®
o2 °° 05 ;S ? g @ i
[ ] ° %
00 8 00 o= .

. . 1. 1. 2. 2. X X 4.
" oture ndex (P/IS:'ET)30 Bt S A

b RMSE / mean GPP Climate zone
. 2 [
5 A z
1 o® | . El L Iy
54 sl T
0
g $ R F XN o & &
g s € F ¢ & F & ¢ N &
E Vegetation type
u [ ]
g 2 ° ° 2
o ° ° .
1 D H ~ ] L é ]
v, o 8 & - T iy
«obs; o ¥ . . . ~*algT_ . e 3 .
0 0
0.0 0.5 1.0 15 2.0 25 30 35 40 © @ & 40 S5 D A S 0 S D O G D O
RN RGO R S R AP S MR RS P
Moisture index (P/PET) £ S Q7 O (GRS

Climate zone

Figure 6. Performance as R? (a) and RMSE (b) of the LSTM (global model) per site against different site characteristics. GRA: grassland,
SAV: savanna, EBF: evergreen broadleaf forest, WSA: woody savanna, MF: mixed forest, CSH: closed shrubland, ENF: evergreen needleleaf
forest, DBF: deciduous broadleaf forest, OSH: open shrubland.

to those sites, AR? < 0.1), 12 have a MI of less than 0.75. The climate of 5 out of those 12 is classified as a hot summer
Mediterranean climate (Csa). The 7 sites with a higher moisture index (MI>0.75) are in polar tundra climates (3) and in humid
temperate and continental climates (4). For the Mediterranean, desert, and semi-arid climates, generalisation capabilities vary
substantially, with the global model outperforming the site-specific one in some sites but not in others.

In terms of generalisation, there are no clear differences between the LSTM and the MLP (Figure 8). However, a pattern
emerges w.r.t. aridity: sites better explained by the LSTM have a mean moisture index of 0.86, while for sites better explained

by the MLP the mean MI is 1.22.
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Figure 7. Patterns in the LSTM’s ability to generalise, measured by AR? (a) and rRMSE (b). Positive AR? values and rRMSE values <1

mean the global model performs better than the site-specific one. GRA: grassland, SAV: savanna, EBF: evergreen broadleaf forest, WSA:

woody savanna, MF: mixed forest, CSH: closed shrubland, ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, OSH: open

shrubland.

3.5 Performance with additional features

Based on the observed temporal error patterns in response to water deficit, we tested whether the memoryless MLP would

benefit from soil moisture as an added predictor (Figure 9). Including soil moisture information from the SPLASH water

balance model led to a minimal difference in overall performance. There is a trend that adding soil moisture improves the MLP

prediction at drier sites (mean MI 0.85), but leads to a small performance loss at moist sites (mean MI 1.23).
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Figure 8. Per-site comparison of AR? for LSTM vs. P-model (a) and LSTM vs. MLP (b). Colours encode the moisture index. The number
of sites on either side of the diagonal and their mean moisture index are displayed in the corners. At the top we show the significance of the

difference in M1, as per the two-sided Mann-Whitney U-test.

We also tested the LSTM with the estimated root zone water holding capacity as additional (time-invariant) predictor (Fig-
ure 9). This slightly decreased the RMSE, respectively increased the R?, at the few extremely moist sites in our dataset (MI>2),

otherwise the differences were minimal.

4 Discussion
4.1 Neural networks are skilled GPP simulators

The most elementary conclusion from our experiments is that neural network models have higher predictive skill than the
theory-based P-model, across all levels of aggregation (Table 2). The main advantage of neural models is their capacity to
represent complex functional dependencies, including effects that may not have been anticipated when deriving a model from
plant physiological theory. Importantly, the neural networks predict GPP more accurately at unseen test sites. In other words,
learning does not overfit the specific data streams at the training sites but discovers transferable patterns that are valid across
space, and thus implicitly across environmental gradients. We attribute this robustness to the diversity of sites in our dataset,
and to careful (fully automatic and data-driven) hyperparameter tuning.

In contrast to the deep learning models (LSTM and MLP), the P-model implements rigid functional dependencies derived

from a simplified depiction of the underlying processes (e.g., the big-leaf representation of canopy light absorption and a
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Figure 9. Impact of complementary input features (soil moisture for the MLP, water holding capacity for the LSTM). Each dot represents

one site. The number of sites on either side of the diagonal and their mean moisture index are displayed in the corners. At the top we show

the significance of the observed differences, as per the two-sided Mann-Whitney U-test.

schematic, empirical treatment of water stress effects). The model has only few parameters to calibrate to the data (in our

case four). On the one hand, so few degrees of freedom deprive the model of the ability to adapt to small but persistent effects

present in the data; making it less accurate. On the other hand, they prevent it from going too far astray in the face of unexpected

inputs.

Considering overall evaluations across all sites and dates, the two neural models perform equally well. However, the ad-

vantage of the LSTM over the other models was clear under certain conditions that we expected from the outset to underlie

temporal structure in the data - water stress (Figure 4) and frost/cold acclimation (Figure 5). Under these conditions, the

LSTM outperforms both the MLP and also the mechanistic model. This indicates a potential for improving our mechanistic

understanding of processes affecting GPP under these conditions.

Analysing patterns in prediction error of the different models and model performance of out-of-sample predictions has

revealed several key insights for (data-driven) modelling of terrestrial photosynthesis and its limitations. In the following, we

discuss them in more detail.
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4.2 Modelling cumulative and lagged effects on GPP benefits from a recurrent model

The prediction errors for both the MLP and P-model tended to grow with increasing water deficit, but errors of the LSTM
remained smaller for moderate levels of water deficits compared to the MLP. The LSTM, which was trained with sequences of
128 days, could adapt to water limited conditions that build up over a period of up to 4 months. Due to the limited sequence
length, longer periods of water stress were presumably not learned, which may contribute to rising errors towards the high
end of cumulative water deficits and the relatively poor prediction of annual anomalies which may be driven by variable
hydroclimatic conditions across years.

In this context, we point out that several factors likely degrade the prediction of annual anomalies: Inter-annual variability of
ecosystem fluxes likely reflects effects by specific site histories which are not reflected in the predictor variables (Abramowitz
et al., 2024), from inconsistencies in measurements of fluxes and meteorological covariates across years (e.g., sensor replace-
ments), or by lagged effects of climatic extreme events (Zscheischler et al., 2014). By their nature, such effects are difficult to
learn from example data spanning at most a few decades.

Adding soil moisture as a predictor to compensate for the MLP’s lack of memory did not clearly boost overall performance.
This indicates that (simulated) soil moisture does not fully account for the effects of gradually changing water stress, calling
into question a widely used practice (Nelson et al., 2024; Kang et al., 2023; Tramontana et al., 2016; Gaber et al., 2024) and
likely relates to a general challenge in accurately modelling water stress effects, which we discuss in more detail below. Soil
moisture information did, however, improve GPP prediction at relatively arid sites at the cost of a slight drop at moist sites —
nudging the behaviour of the MLP towards that of the LSTM. We speculate that this trade-off could hint at a dependence of the
functional relationships on aridity. The dependence of GPP on a soil moisture optimum that shifts in response to the growing
season soil moisture (Peng et al., 2024) could also contribute to an advantage of the LSTM compared to the MLP with the
current value of soil moisture.

Conversely, the LSTM had an advantage over the MLP in arid regions, but a (small) disadvantage in moist regions (Figure 8);
while there was no obvious relation between the moisture index and the preference for global or site-specific modelling. Taken
together, it seems that the LSTM more consistently generalises across different aridity levels than the non-recurrent model.
This could be an indication that the functional relationships it uncovers hold over a wider range of aridity regimes.

The LSTM also better captured delayed GPP increase in spring due to the cold acclimation effect (Figure 5). Luo et al. (2023)
found that a reduced efficiency of photosynthetic light utilisation during springtime was a consequence of a combination of
low minimum temperatures and high radiation during the weeks and months leading up to and during the start of the growing
season. A recurrent deep learning model offers a basis for more accurately modelling GPP under such conditions than non-
recurrent architectures. Unresolved challenges remain, though, in the form of a remaining marked bias in the early part of

spring also for the LSTM.
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4.3 Unknown effects of water stress are a dominating source of model error

We found that GPP can relatively reliably be predicted across relatively moist, winter-cold sites. For sites with a moisture index
of 0.75 and above, the mean R? for spatial out-of-sample predictions was 0.76. This indicates that - at least for the abiotic and
biotic conditions represented in our dataset - GPP can be reliably simulated. Generalised models that spatially upscale yield
relatively reliable results under such conditions with the R? of spatial out-of-sample tests falling between 0.52 and 0.94.

However, under more arid conditions (MI <0.75) we found very variable performance of a generalised model. Different
factors may cause poor generalisability across sites. Poor data quality with systematic differences of measurement errors across
sites (Abramowitz et al., 2024), differences in functional relationships between GPP and its predictors across different species
and vegetation types, or insufficient information in predictor variables all may underlie the variable performance of the global
model across sites. Our results suggest that variable model performance is not clearly related to vegetation types (Figure 6).
A tendency of poorer model performance in evergreen vegetation is likely related to limited information in remotely sensed
greenness which is provided as a predictor (FAPAR). A clearer relationship of model performance was found across climate
zones and across the gradient of the site’s average aridity (Figure 6). Together with our finding of a clear relationship between
the model prediction error and potential cumulative water deficits (Figure 4), this suggests that poor model generalisability is
linked to variable exposure and response to water stress across sites. Apparently, the history of precipitation and radiation is
not sufficient to accurately model vegetation water stress exposure and responses, and effects on GPP.

Two factors are likely to undermine generalisability. First, responses to declining water potentials in the rooting zone are
highly variable across species and linked to plant hydraulic traits and water use strategies. Even within broad classes of vegeta-
tion types, hydraulic relations of different plant species exhibit a wide variety (Choat et al., 2012; Joshi et al., 2022; Anderegg
et al., 2018; Xu et al., 2016; Whitley et al., 2017; Konings and Gentine, 2017). Particularly in dry-adapted ecosystems (e.g.,
savannas and shrublands), contributions of different species to ecosystem-level integrated fluxes may also change over the
season as a result of species-specific responses of leaf area to dryness (Xu et al., 2016; Whitley et al., 2017). Without related
information provided to models, this complexity and the resulting variability of GPP responses to dryness cannot accurately be
modelled across ecosystems with different species compositions.

Second, the exposure to water stress is highly variable across sites as a result of the surrounding topography and subsurface
hydrology. Giardina et al. (2023) found strong variations of the functional relationship between evapotranspiration and cumu-
lative water deficits, suggesting strongly variable rooting zone water storage capacities and plant access to groundwater across
sites (Fan et al., 2017). Subsurface hydrology, groundwater influence, and belowground moisture convergence also appear to
lead to large differences in ecosystem water balances at relatively dry sites (Hahm et al., 2019; McCormick et al., 2021). Several
flux measurement sites have been identified as having greater mean annual precipitation than evapotranspiration, suggesting
subsurface moisture convergence and the influence of groundwater (Abramowitz et al., 2024). Due to the close link between
evapotranspiration and GPP, these relations affect vegetation activity in general, including GPP. The surrounding topography,
water holding capacity of the soil and weathered bedrock, groundwater table depth and rooting depth are either insufficiently

known or specified from the predictors used for modelling GPP. Thus, related effects on GPP and the associated variability of
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water stress exposure cannot accurately be modelled across space. Variable water stress exposure and response affect GPP in
relatively moist and energy-limited sites to a lesser degree than sites with frequent water limitation. Hence, a clear relation of
model generalisability across aridity (Figure 7) emerges.

Another factor that contributes to these generalisation challenges is remotely sensed fAPAR, which is a predictor of GPP
and tends to be less accurate in arid regions, where satellite sensors struggle to capture the large spatial heterogeneity at sub-
pixel scales and may be affected by light absorption by non-photosynthetically active tissue (Kannenberg et al., 2024). In
particular, noise due to sparsity, vegetation senescence and soil background lead to a frequent overestimation of fAPAR in arid
and semiarid regions (Smith et al., 2019). This is exacerbated by the relative lack of ground observations in drylands, needed
for calibration.

We expected that site-specific responses would be more effectively modelled by site-specific models compared to a gener-
alised, global model. However, this was not unanimously the case. While the mean prediction error (RMSE) was generally
lower for site-specific models, these models often predicted a smaller fraction of variation in the data than the global mod-
els. This was most clearly found for sites for which relatively short time series were available for model training. Hence,
site-specific responses appear to be learnable, given sufficient data. Our interpretation is that R2 measures the ability to ex-
plain the variance in GPP, a task that becomes easier as the model sees more data. Put differently, a site-specific model can
more accurately memorize the mean seasonal cycle of one particular site; but may not learn as well to deduce daily variations
from observed changes in light and meteorology, due to its restricted sample. Indeed, sites where the global model was better
(positive AR?) invariably had relatively short observation periods (Figure 6), which increases the need to learn parts of the

functional relation from other sites.
4.4 Caveats

It should be noted that the collection of sites used here represents only a limited subset of all relevant environments on Earth.
Only one site located in a tropical ever-wet climate is used here and certain conditions and combinations of vegetation types
and species, environments, and plant growth conditions (soil, subsurface hydrology) may not be covered by our spatial cross-
validation setup. Indeed, our evaluation suggests that the GPP predictions are relatively poor at the single ever-wet tropical site
(Figure 3). The limited data availability is exacerbated by the fact that seasonal variations in GPP and environmental conditions
tend to be very small in the tropics. Hence, it is unclear whether our learned models extrapolate well across the globe (Ludwig
et al., 2023; Meyer and Pebesma, 2022). While it is technically possible to predict GPP wherever the input predictors are
available, such upscaling should be done with great caution, and the limited reliability under particular conditions should
be considered. Our results suggest that predictions are least reliable in regions with pronounced seasonal or perennial water
limitation, and in the moist tropical forest biome.

We point out a technical limitation of our comparison: Adding recurrence not only equips the LSTM with a memory to
model temporal dependencies of ecosystem photosynthesis; it inevitably changes also the model architecture. We auto-tuned

the models separately for best performance, still the GPP predictions for the same test sites were made by models with different
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theoretical capacities (that may vary, as the numbers of layers and the layer sizes were auto-tuned per cross-validation fold).

This makes it challenging to attribute all performance differences to the recurrent mechanism.

5 Conclusions

We have demonstrated that an LSTM — a popular type of recurrent deep neural network — is a powerful model to predict ecosys-
tem GPP from local meteorological observations and remotely sensed fAPAR. Based on a spatial and temporal out-of-sample
evaluation, we find that the model has significantly higher predictive skill than the theory-based P-model and outperforms a
non-recurrent deep learning model under conditions of low root-zone moisture availability and very low temperatures in pre-
ceding weeks. The LSTM reliably simulates GPP dynamics across a range of environmental conditions and vegetation types
(no agricultural vegetation tested here) at relatively moist sites (MI >0.75). An exception is the only tropical evergreen site in
our dataset, where low seasonality of the environment constitutes a challenge for predicting observed GPP variations.
Through a detailed analysis of error patterns, we find that a recurrent model more accurately captures the GPP response to
longer-term, cumulative impact. In particular, the LSTM adapts better to arid environments affected by water stress, a condition
that builds up over time. Yet, we find that there is still a large variability in model skill across relatively arid sites, even if it
outperforms both the mechanistic P-model and a memoryless neural network. This suggests that the model lacks information
on variations in exposure and response to water stress and related effects on GPP. The inclusion of additional remotely-sensed
and temporally varying information (e.g., land surface temperature (Fisher et al., 2020), sun-induced fluorescence (Li et al.,
2018), vegetation optical depth (Konings and Gentine, 2017)) or static information about the topography, average groundwater
table depth (Fan et al., 2013), and subsurface structure (Pelletier et al., 2016) as predictors for the deep learning models bears
the potential for reducing errors and yielding more reliable GPP simulations in dry environments. As ecosystems are becoming
more exposed to water limitation due to climate change (Denissen et al., 2022; Fu et al., 2024), it remains an important research

topic to improve the predictability of ecosystem fluxes in the context of water stress.

Code and data availability. The code and data used in this study are available in the following GitHub repository: https://github.com/
SamanthaBiegel/gpp-ml. Releases of this repository are archived on Zenodo (Biegel, 2025) The CSV file ’data/fdk_v342_ml.csv’, which
can be obtained from the repository, contains the dataset that is used as input to the machine learning experiments. The creation of this
dataset can be reproduced with several steps. First, data is obtained from FluxDataKit v3.4.2 (Hufkens and Stocker, 2025), which gathers
publicly accessible flux data from the major networks of eddy covariance sites described in section 2.1. The files from FluxDataKit are then
processed using the script ’src/preprocess_data.py’, which results in the aforementioned CSV file. The data used as forcing for the P-model is
available in a separate file in the repository that is derived from the CSV file and FluxDataKit metadata: *R/drivers.rds’. Model experiments
can be run with these two files as input by following the steps for environment preparation and experiment runs as detailed in the documenta-
tion page of the repository (https://github.com/SamanthaBiegel/gpp-ml). Predictions from all model experiments are stored in the directory

"preds/’ and processed with *figures.ipynb’ to produce the figures presented here.
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Sitename Period MI Clim.  Veg. Evergreen Delayed GPP
AT-Neu 2002-2012  1.34 Dfc GRA  False
AU-ASM  2012-2016 0.23 BSh SAV  False
AU-Cow 2010-2014 3.89 Am EBF  True
AU-Cum 2013-2018 0.60 Cfa EBF  True
AU-DaS 2012-2017 0.74 Aw SAV  False
AU-GWW  2013-2017 0.23 BWh SAV  False
AU-Gin 2012-2017 042 Csa WSA  False
AU-How 2009-2017 092 Aw WSA  False
AU-Stp 2011-2016  0.50 BSh GRA  False
AU-Tum 2011-2017 0.53 Cfb EBF  True
AU-Ync 2012-2016  0.23 BSk GRA  False
BE-Bra 2010-2020 1.17 Cfb MF False
BE-Dor 2011-2020 1.07 Cfb GRA  False
BE-Maa 2016-2020 1.16 Cfb CSH  False
BE-Vie 1997-2020 1.36 Cfb MF False False
CA-Cal 1998-2009 3.03 Cfb ENF  True
CA-Ca2 2001-2010 345 Cfb ENF  True
CA-Cbo 2009-2020 1.17 Dfb DBF  False
CA-Gro 2004-2013 1.16 Dfb MF False
CA-Qfo 2004-2010 1.47 Dfc ENF  True
CA-TP1 2009-2013 1.15 Dfb ENF  True
CA-TP3 2008-2017 1.35 Dfb ENF  True
CA-TPD 2012-2017 092 Dfb DBF  False
CH-Aws 2015-2020 196 ET GRA  False
CH-Cha 2010-2020 1.53 Cfb GRA  False
CH-Dav 1997-2009 120 ET ENF  True
CH-Fru 2011-2020 247 Cfb GRA  False
CH-Lae 2005-2019 1.22  Cfb MF False
CH-Oel 2003-2008 1.93 Cfb GRA  False
CZ-BK1 2004-2019 1.88 Dfb ENF  True
CZ-Lnz 2015-2020 0.66 Dfb MF False
CZ-RAJ 2012-2020 0.83 Dfb ENF  True
CZ-Stn 2010-2020 0.96 Dfb DBF  False
DE-Gri 2005-2019 1.38 Cfb GRA  False
DE-Hai 2000-2019 1.22 Cfb DBF  False True

Continued on next page
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Sitename  Period MI Clim. Veg. Evergreen Delayed GPP
DE-HoH 2015-2020 0.66 Cfb DBF  False

DE-Obe  2009-2020 1.64 Cfb ENF  True

DE-RuR  2012-2020 1.52 Cfb GRA False

DE-RuW  2013-2020 1.66 Cfb ENF  True

DE-Tha 1997-2019 1.18 Cfb ENF  True

DK-Sor 1997-2012 1.75 Cfb DBF  False

ES-Abr 2016-2020 035 Csa SAV  False

ES-Agu 2007-2013 028 BSk  OSH False

ES-LJu 2006-2015 0.72 Csa OSH False

ES-LM1  2015-2020 0.54 Csa SAV  False

ES-LM2  2015-2020 0.51 Csa SAV  False

FI-Hyy 1997-2016 1.27 Dfc ENF  True False
FI-Let 2010-2020 1.29 Dfb ENF  True

FI-Sod 2008-2014 1.74 Dfc ENF  True

FI-Var 2016-2020 1.70 Dfc ENF  True

FR-Bil 2015-2020 0.99 Cfb ENF  True

FR-FBn 2009-2020 0.63 Csa MF False

FR-Fon 2006-2013 096 Cfb DBF  False

FR-LBr 2003-2008 1.04 Cfb ENF  True

FR-Pue 2001-2013  1.00 Csa EBF  True

IL-Yat 2012-2020 0.18 BSh ENF  True

IT-Col 2007-2014 129 Cfa DBF  False

IT-Cpz 2001-2007 0.65 Csa EBF  True

IT-Lav 2003-2020 141 Cfb ENF  True

IT-Lsn 2016-2020 1.12 Cfa OSH False

IT-MBo 2004-2012 1.88 Dfb GRA False

IT-Noe 2005-2010 0.52 Csa CSH False

IT-Ren 2001-2014 1.27 Dfc ENF  True

IT-Rol 2002-2006 0.84 Csa DBF  False

IT-Ro2 2002-2007 0.77 Csa DBF  False

IT-SR2 2013-2020 1.03 Csa ENF  True

IT-Tor 2009-2020 1.94 Dfc GRA  False

NL-Loo 1997-2017 1.07 Cfb ENF  True False
RU-Fy2 2016-2020 0.96 Dfb ENF  True

RU-Fyo 1999-2009 0.93 Dfb ENF  True False

Continued on next page
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Sitename  Period MI Clim.  Veg. Evergreen Delayed GPP
SE-Htm 2015-2020 1.30 Cfb ENF  True

SE-Nor 2014-2020 0.89 Dfb ENF  True

SE-Ros 2015-2020 1.59 Dfc ENF  True

US-BZS 2016-2020 0.75 Dfd ENF  True

US-Bar 2005-2017 1.54 Dfb DBF  False

US-Blo 2001-2006 1.19 Csb ENF  True

US-Fmf 2006-2010 0.51 Csb ENF  True

US-GLE  2006-2019 1.73 Dfc ENF  True

US-Hal 1992-2020 0.80 Dfb DBF  False True
US-Ho2 2007-2017 1.06 Dfb ENF  True

US-ICh 2010-2021 1.60 ET OSH False

US-ICt 2016-2020 131 ET OSH False

US-Jol 2011-2016 0.19 BWk OSH False

US-Jo2 2011-2020 023 BWk OSH False

US-KFS 2008-2019 0.66 Cfa GRA  False

US-KLS 2013-2019 042 Cfa GRA  False

US-MMS  1999-2020 0.58 Cfa DBF  False True
US-MOz  2007-2019 0.86 Cfa DBF  False

US-Me2 2005-2010 0.64 Csb ENF  True

US-Mpj 2009-2020 0.30 BSk WSA  False

US-NR1 2000-2015 0.67 Dfc ENF  True

US-PFa 1997-2014 0.52 Dfb MF False True
US-Rms 2015-2019 0.51 BSh CSH  False

US-Ro4 2015-2021 1.28 Dfa GRA  False

US-Rwf 2015-2019  0.59 BSh CSH  False

US-Rws 2015-2019  0.69 BSk OSH False

US-SRG  2009-2014 0.37 BSk GRA  False

US-SRM  2005-2014 0.29 BSk WSA  False

US-Seg 2007-2021 0.27 BSk GRA  False

US-Ses 2008-2021 0.24 BSk OSH False

US-Syv 2002-2006 1.14 Dfb MF False

US-Ton 2002-2014 0.50 Csa WSA  False

US-UMB  2000-2014 041 Dfb DBF  False

US-UMd  2008-2021 1.21 Dfb DBF  False

US-Var 2001-2020 0.65 Csa GRA  False

Continued on next page
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Sitename  Period MI Clim. Veg. Evergreen Delayed GPP
US-WCr  2000-2005 1.08 Dfb DBF  False
US-Whs  2009-2015 0.26 BSk  OSH False
US-Wjs 2008-2021 029 BSk  SAV  False
US-Wkg  2005-2021 0.31 BSk  GRA False
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